Detection of Boosted DM

K.C. Kong, G. Mohlabeng & **JCP** [arXiv: 1411.6632]

Jong-Chul Park

January 28, 2015

YongPyong-High1 Conference 2015

What's Dark Matter?

Dark Matter (DM)

- **♦ DM**: ~25% of our Universe
- * **Compelling paradigm**: massive, non-luminous & stable particles

* Evidence

- ✓ Galaxy rotation curve
- ✓ Bullet cluster
- ✓ Gravitational lensing
- ✓ Structure formation
- ✓ CMB

✓ ...

- ✓ Coma Cluster
- ✓ Sky surveys

rotational velocity $v \sim \text{const.}$ $v \sim \text{const.}$ $v \sim \text{const.}$ $v \sim \frac{1}{\sqrt{R}}$ $v \sim \frac{1}{\sqrt{R}}$ $v \sim \frac{1}{\sqrt{R}}$ $v \sim \frac{1}{\sqrt{R}}$ $v \sim \frac{1}{\sqrt{R}}$

DM Search Strategies

DM Search Strategies

What's Boosted DM?

Boosted DM (BDM)

- ◆ Generic phenomena in non-minimal DM sector:
 Late-time processes → Small fraction of DM today is relativistic.
- **♦ Sources of boosted DM**: non-minimal/extended DM sector
 - ✓ Assisted freeze-out: $\psi_i \psi_j \rightarrow \psi_k \psi_l$; ψ_k, ψ_l lighter (Belanger & **JCP**, 2011)
 - ✓ **Semi-annihilation**: $\psi_i \psi_j \rightarrow \psi_k \varphi$; Z_N DM symmetry (D'Eramo & Thaler, 2010)
 - $\checkmark \quad \mathbf{Decay:} : \psi_i \rightarrow \psi_j + \varphi$
- ✤ Detection of BDM:

✓ ...

- ✓ Reveal non-minimal features of DM sector
- ✓ Conventional DM searches → Unsuitable → New Search Strategies!

Basic Set-up

- * Two species of DM: ψ_A , ψ_B with $m_A > m_B$ (e.g. $U(1)' \otimes U(1)''$, $Z_2 \otimes Z'_2$)
- * ψ_A : dominant DM component, no direct coupling to the SM
 - → Assisted Freeze-out
- ♦ ψ_B : sub-dominant, direct coupling to the SM ($\mathcal{L} \supset -\frac{1}{2} \sin \epsilon X_{\mu\nu} F^{\mu\nu}$)

Basic Features

- ✤ Relic density of ψ_A is set by $\psi_A \overline{\psi}_A \rightarrow \psi_B \overline{\psi}_B$
- ★ Detection of ψ_A : no-direct coupling to the SM → X
- ★ Detection of relic ψ_B : small relic → X
- ♦ Annihilation products ψ_B : boosted with Lorentz factor $\gamma = m_A/m_B$
 - → Boosted DM!
- ♦ Detection of boosted ψ_B → Indirect detection of ψ_A
 - → Smoking-gun of DM sector!

Basic Features

- ✤ Relic density of ψ_A is set by $\psi_A \overline{\psi}_A \rightarrow \psi_B \overline{\psi}_B$
- ♦ Detection of ψ_A : no-direct coupling to the SM → X
- ♦ Detection of relic ψ_B : small relic → X
- ♦ Annihilation products ψ_B : boosted with Lorentz factor $\gamma = m_A/m_B$

New detection

Method!

- → Boosted DM!
- ♦ Detection of boosted ψ_B → Indirect detection of ψ_A
 - → Smoking-gun of DM sector!

BDM from Galactic Center

- ★ Agashe et al. (arXiv:1405.7370) examined flux of boosted ψ_B by the annihilation of ψ_A from the Galactic Center (GC).
- ✤ Flux: NFW profile + 10° cone around GC

$$\Phi_{\rm GC}^{10^{\circ}} = 9.9 \times 10^{-8} \ {\rm cm}^{-2} {\rm s}^{-1} \left(\frac{\langle \sigma_{A\overline{A} \to B\overline{B}} v \rangle}{5 \times 10^{-26} \ {\rm cm}^3/{\rm s}} \right) \left(\frac{20 \ {\rm GeV}}{m_A} \right)^2$$

BDM from Galactic Center

- ★ Agashe et al. (arXiv:1405.7370) examined flux of boosted ψ_B by the annihilation of ψ_A from the Galactic Center (GC).
- ✤ Flux: NFW profile + 10° cone around GC

$$\Phi_{\rm GC}^{10^{\circ}} = 9.9 \times 10^{-8} \ {\rm cm}^{-2} {\rm s}^{-1} \left(\frac{\langle \sigma_{A\overline{A} \to B\overline{B}} v \rangle}{5 \times 10^{-26} \ {\rm cm}^3/{\rm s}} \right) \left(\frac{20 \ {\rm GeV}}{m_A} \right)^2$$

♦ Small flux → Large volume detector sensitive to ψ_B +SM → ψ_B +SM
 → Neutrino detectors: Super-K, IceCube, ...

Future: Hyper-K, PINGU, ...

Background & its Rejection

- ★ Major background: atmospheric neutrinos $\nu_e n \rightarrow e^- p$
 - → Almost uniform in the entire sky!
- ✤ Background reduction: governed by angular resolution of an experiment
- ♦ $\theta_{\min} \sim 10^{\circ}$: optimal angle for S/ \sqrt{B} due to the DM halo distribution

BDM from the Sun

Kong, Mohlabeng & **JCP** (2014)

Chen, Lee, Lin & Lin (2014)

Self-interaction of the secluded DM greatly enhances the capture rate

in the Sun \rightarrow The Sun becomes a point-like source of BDM

✤ Time evolution of DM number in the Sun

 $\frac{dN_{\chi}}{dt} = C_c + (C_s - C_e)N_{\chi} - (C_a + C_{se})N_{\chi}^2$

- ✓ C_c : capture rate by nuclei inside the Sun
- ✓ **C**_s: self-capture rate
- \checkmark **C**_e: evaporation rate due to the self-interaction
- ✓ C_a: annihilation rate
- ✓ C_{se} : evaporation rate due to the self-interaction

For BDM from the Sun, see also Berger et al. (arXiv:1410.2246)

Self-Interacting DM (SIDM)

- ★ Simulations with SIDM show that SIDM with $\sigma_{\chi\chi}/m_{\chi} \sim O(0.1 1 \text{ cm}^2/\text{g})$ can reconcile simulations & observations at small scales while not changing CDM behavior at large scales.
- Cusp vs Cored" problem:
 - > CDM N-body simulations present steep cusp profile.
 - > Dwarf galaxies indicate cored profile.
- ✤ "Too big to fail" problem:

Satellites of Milky-way type galaxies have less DM than N-body simulations.

Captured Heavy DM ψ_A

$$N_{\chi}(t) = \frac{C_c \tanh(t/\tau_{\rm eq})}{\tau_{\rm eq}^{-1} - (C_s - C_e) \tanh(t/\tau_{\rm eq})/2} \qquad \tau_{\rm eq} = \frac{1}{\sqrt{C_c(C_a + C_{se}) + (C_s - C_e)^2/4}}$$
(2014)

Flux of BDM ψ_B from the Sun

Kong, Mohlabeng & JCP (2014)

$$\frac{d\Phi_B^{\text{Sun}}}{dE_B} = \frac{\Gamma_A^{\psi_A}}{4\pi R_{\text{Sun}}^2} \frac{dN_B}{dE_B}$$
$$\frac{dN_B}{dE_B} = 2\delta(E_B - m_A)$$

- ★ Annihilation of ψ_A produces 2 mono-energetic boosted ψ_B 's.
- ↔ We have to take into account other factors, e.g. E loss of ψ_B during propagation through the Sun ~ O(1-10 GeV).

Detection of BDM

- Large volume v detectors can detect energetic charged particles from v-matter collisions.
- ♦ Boosted DM: energetic e's resulting from $\psi_B e^- \rightarrow \psi_B e^-$
- Energetic e's would emit Cherenkov light

Background Reduction

Kong, Mohlabeng & JCP (2014)

1730

♦ Sun: Point-like source → Efficient background reduction! (GC: $\theta_{min} \sim 10^{\circ}$)

✤ Good angular resolution is very important.

Experiment	Volume (MTon)	E_e^{thresh} (GeV)	$\theta_e^{\rm res}$ (degree)
Super-K	2.24×10^{-2}	0.01	3°
Hyper-K	0.56	0.01	3°
IceCube	10^{3}	100	30°
PINGU	0.5	1	$23^{\circ}(\text{at GeV scale})$

Signal Rates

Total number of signal events:

Kong, Mohlabeng & JCP (2014)

Experimental Reach

2\sigma sensitivities for ~10 years of data

Kong, Mohlabeng & JCP (2014)

Conclusion & Future

- > **Boosted DM(BDM)** ($v \sim c$): Generic in non-minimal DM sector
- Direct detection of light BDM Indirect detection of heavy DM
- > Small flux \rightarrow Larger volume (V_{eff})
- > Reduction of *v* background \rightarrow smaller angular resolution (θ_{res})
- Hyper-K is so far the best experiment for BDM detection.
- > IceCube/PINGU with $V_{eff}(E) \& \theta_{res}(E)$ → Improving S/√B

Conclusion & Future

- > **Boosted DM(BDM)** ($v \sim c$): Generic in non-minimal DM sector
- ➤ Direct detection of light BDM → Indirect detection of heavy DM
- > Small flux \rightarrow Larger volume (V_{eff})
- > Reduction of *v* background \rightarrow smaller angular resolution (θ_{res})
- Hyper-K is so far the best experiment for BDM detection.
- ≻ IceCube/PINGU with $V_{eff}(E)$ & $\theta_{res}(E)$ → Improving S/√B

Thank you

Model Parameter Space

- ♦ Defined by 7 parameters $\{m_A, m_B, m_X, \Lambda, g_X, \epsilon, \sigma_{AA}\}$
- - \rightarrow Dominant phenomenology depends on mass parameters

Boosted DM from GC

• Flux of boosted ψ_B from the Galactic center (GC)

$$\frac{d\Phi_{\rm GC}}{d\Omega \, dE_B} = \frac{1}{4} \frac{r_{\rm Sun}}{4\pi} \left(\frac{\rho_{\rm local}}{m_A}\right)^2 J \, \langle \sigma_{A\overline{A} \to B\overline{B}} v \rangle_{v \to 0} \frac{dN_B}{dE_B}$$

✤ Assuming NFW profile, integrate over 10° cone around GC

$$\Phi_{\rm GC}^{10^{\circ}} = 9.9 \times 10^{-8} \ {\rm cm}^{-2} {\rm s}^{-1} \left(\frac{\langle \sigma_{A\overline{A} \to B\overline{B}} v \rangle}{5 \times 10^{-26} \ {\rm cm}^3/{\rm s}} \right) \left(\frac{20 \ {\rm GeV}}{m_A} \right)^2$$

♦ Small flux → Large volume detector sensitive to ψ_B +SM → ψ_B +SM

→ Neutrino detectors: Super-K, IceCube, ...

Future: Hyper-K, PINGU, ...

Agashe et al. (2014)

Signal Rates

* Total number of signal events: $N_{\text{signal}}^{\theta_C} = \Delta T N_{\text{target}} \left(\Phi_{\text{GC}} \otimes \sigma_{Be^- \to Be^-} \right) \Big|_{\theta_C}$

Experimental Reach

* 20 exclusion limit using Super-K ~10-year all-sky data

Agashe et al. (2014)